On Privacy in Time Series Data Mining

نویسندگان

  • Ye Zhu
  • Yongjian Fu
  • Huirong Fu
چکیده

Traditional research on preserving privacy in data mining focuses on time-invariant privacy issues. With the emergence of time series data mining, traditional snapshot-based privacy issues need to be extended to be multi-dimensional with the addition of time dimension. We find current techniques to preserve privacy in data mining is not effective in preserving time-domain privacy. We present data flow separation attack on privacy in time series data mining, which is based on blind source separation techniques from statistical signal processing. Our experiments with real and synthetic data show that this attack is effective. By combining the data flow separation method and the frequency matching method, an attacker can identify data sources and compromise time-domain privacy. We propose possible countermeasures to the data flow separation attack in the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of attacks on time series data mining\m{1}

Traditional research on preserving privacy in data mining focuses on time-invariant privacy issues. With the emergence of time series data mining, traditional snapshot-based privacy issues need to be extended to be multi-dimensional with the addition of time dimension. We find current techniques to preserve privacy in data mining are not effective in preserving time-domain privacy. We present t...

متن کامل

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

Forecasting Gold Price using Data Mining Techniques by Considering New Factors

Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...

متن کامل

Adaptively Sharing Time-Series with Differential Privacy

Sharing real-time aggregate statistics of private data has given much benefit to the public to perform data mining for understanding important phenomena, such as Influenza outbreaks and traffic congestions. We propose an adaptive approach with sampling and estimation to release aggregated time series under differential privacy, the key innovation of which is that we utilize feedback loops based...

متن کامل

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008